top of page

Publication Highlights

Garcia Gomez G, Hirst AG, Spencer M, Atkinson D (2024) Responses of intraspecific metabolic scaling to temperature and activity differ between water- and air-breathing ectothermic vertebrates. Ecology Letters https://doi.org/10.1111/ele.14389

Horne CR, Hirst AG*, Atkinson D (2015) Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters 18: 327-335.

doi: 10.1111/ele.12413

Hirst AG, Glazier DS, Atkinson D (2014) Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecology Letters 17: 1274-1281. doi: 10.1111/ele.12334

Featured as Ecology Letters front cover lead article

Forster J, Hirst AG*, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences USA 109: 19310-19314. doi: 10.1073/pnas.1210460109

Featured as PNAS front cover lead article

Hirst AG, Horne CR, Atkinson D (2015) Equal temperature-size responses of the sexes are widespread within arthropod species. Proceedings of the Royal Society B 282: 20152475. doi: 10.1098/rspb.2015.2475

Featured as Proceedings B front cover

Horne CR, Hirst AG*, Atkinson D (2020) Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proceedings of the Royal Society B 287: 20192640. http://dx.doi.org/10.1098/rspb.2019.2640

Kiørboe T, Hirst AG. (2014) Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic organisms. The American Naturalist 183: E118-E130. doi: 10.1086/675241

Horne CR, Hirst AG*, Atkinson D, Neves A, Kiørboe T (2016) A global synthesis of seasonal temperature-size responses in copepods. Global Ecology and Biogeography. 25: 988-999. DOI: 10.1111/geb.12460

Featured as the front cover lead article

Hirst AG, Bunker AJ (2003) Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnology and Oceanography 48: 1988-2010

Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series 230: 195-209

badges.altmetric.png

*Corresponding author when not first

Full Publication List:

88. Garcia Gomez G, Hirst AG, Spencer M, Atkinson D (2024) Responses of intraspecific metabolic scaling to temperature and activity differ between water-and air-breathing ectothermic vertebrates. Ecology Letters https://doi.org/10.1111/ele.14389 

87. Plankton: a worldwide guide (to be published early 2024). Authors Tom Jackson & Jennifer Parker, Edited by Andrew Hirst. Princeton University Press, 224pp. https://press.princeton.edu/books/hardcover/9780691255996/plankton

86. Corona S, Hirst AG, Boersma M, Renz J, Atkinson D, Atkinson A (2024). Long-term shifts in phenology, thermal niche, population size, and their interactions in marine pelagic copepods. Limnology and Oceanography doi: 10.1002/lno.12499

85. Barber I, Hirst AG, Smith C (2023) The challenges faced by fish in a dynamic world. Journal of Fish Biology 103:749-751. DOI: 10.1111/jfb.15545

84. Special Issue Journal of Fish Biology (2023). 'Fisheries Society of the British Isles, Annual Symposium 2022: Fish in a dynamic world', Volume 103: 747-850. Edited by: Carl Smith, Iain Barber, Andrew G. Hirst

83. Boughton J, Hirst AG, Lucas CH, Spencer M. (2023) 80. Boughton J, Hirst AG, Lucas CH, Spencer M. (2023) Negative and positive interspecific interactions involving jellyfish polyps in marine sessile communities. PeerJ 11, e14846

82. Corona S, Hirst A, Atkinson D, Atkinson A (2021) Density-dependent modulation of copepod body size and temperature–size responses in a shelf sea. Limnology and Oceanography 66: 3916-3927. https://doi.org/10.1002/lno.11930

81. Tan H, Hirst AG, Atkinson D, Kratina P (2001) Body size and shape responses to warming and resource competition. Functional Ecology 35:1460–1469 DOI: 10.1111/1365-2435.13789

80. Verberk WCEP, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H (2021) Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biological Reviews 96: 247-268. doi: 10.1111/brv.12653

77. Atkinson A, Lilley MKS, Hirst AG, McEvoy AJ, Tarran GA, Widdicombe C, Fileman ES, Woodward EMS, Schmidt K, Smyth TJ, Somerfield PJ (2021) Increasing nutrient stress reduces the efficiency of energy transfer through planktonic size-spectra. Limnology & Oceanography. doi: 10.1002/lno.11613

79. Horne CR, Hirst AG*, Atkinson D (2020) Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proceedings of the Royal Society B 287: 20192640. http://dx.doi.org/10.1098/rspb.2019.2640

78. Lee L, Atkinson D, Hirst AG, Cornell S  (2020) A new framework for growth curve fitting based on the von Bertalanffy Growth Function. Scientific Reports 10, 7953. https://doi.org/10.1038/s41598-020-64839-y

76. Evans LE, Hirst AG, Kratina P, Beaugrand G (2020) Temperature‐mediated changes in zooplankton body size: large scale temporal and spatial analysis. Ecography 43: 581–590. https://doi.org/10.1111/ecog.04631

75. Cornwell LE, Fileman ES, Bruun JT, Hirst AG, Tarran GA, Findlay HS, Lewis C, Smyth TJ, McEvoy AJ, Atkinson A (2020) Resilience of the copepod Oithona similis to climatic variability: egg production, mortality, and vertical habitat partitioning. Frontiers in Marine Science https://doi.org/10.3389/fmars.2020.00029

74. Tan H, Hirst AG*, Glazier D, Atkinson D (2019) Ecological pressures, and the contrasting scaling of metabolism and body shape in coexisting taxa: cephalopods versus teleost fish. Philosophical Transactions of the Royal Society B 374: 20180543. http://dx.doi.org/10.1098/rstb.2018.0543

73. Horne CR, Hirst AG†*, Atkinson D (2019) A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia 190: 343–353. [Featured on the front cover: https://link.springer.com/article/10.1007/s00442-019-04428-7†Joint first author

72. Horne CR, Hirst AG*, Atkinson D, Almeda R, Kiørboe T (2019) Rapid shifts in the thermal sensitivity of growth but not development rate causes temperature-size response variability during ontogeny in arthropods. Oikos https://doi.org/10.1111/oik.06016

71. Horne CR, Hirst AG*, Atkinson D (2018) Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology https://doi.org/10.1111/1365-2435.13031

70. Maud JL, Hirst AG, Atkinson A, Lindeque PK, McEvoy AJ (2018) Mortality of Calanus helgolandicus: sources, differences between the sexes and consumptive and non-consumptive processes. Limnology & Oceanography doi: 10.1002/lno.10805

69. Cornwell LE, Findlay HS, Lewis C, Fileman ES, Smyth TJ, Hirst AG, Bruun JT, McEvoy AJ, Widdicombe CE, Castellani C, Atkinson A (2018) Seasonality of Oithona similis and Calanus helgolandicus reproduction and abundance: contrasting responses to environmental variation at a shelf site. Journal of Plankton Research doi:10.1093/plankt/fby007

68. Welti N, Striebel M, Ulseth AJ, Cross WF, DeVilbiss S, Glibert PM, Guo L, Hirst AG, Hood J, Kominoski JS, MacNeill KL, Mehring AS, Welter JR, Hillebrand H (2017) Bridging ecosystem metabolism, food web interactions, and biogeochemistry using the common language of Ecological Stoichiometry. Frontiers in Microbiology 8: doi: 10.3389/fmicb.2017.01298

67. Horne CR, Hirst AG*, Atkinson D (2017) Seasonal body size reductions with warming co-vary with major body size gradients in arthropod species. Proceedings of the Royal Society B 284: 20170238. http://dx.doi.org/10.1098/rspb.2017.0238

66. Hirst AG, Lilley MKS, Glazier DS, Atkinson D (2017) Ontogenetic body-mass scaling of nitrogen excretion relates to body surface area in diverse pelagic invertebrates. Limnology and Oceanography 62: 311-319. doi: 10.1002/lno.10396

65. Horne CR, Hirst AG*, Atkinson D, Neves A, Kiørboe T (2016) A global synthesis of seasonal temperature-size responses in copepods. Global Ecology and Biogeography 25: 988-999. DOI: 10.1111/geb.12460 [Featured as front cover lead article: http://onlinelibrary.wiley.com/doi/10.1111/geb.2016.25.issue-8/issuetoc]65. 

64. Le Quéré C, Buitenhuis ET, Moriarty R, Alvain S, Aumont O , Bopp L, Chollet S, Enright C, Franklin DJ, Geider RJ, Harrison SP, Hirst AG, Larsen S, Legendre L, Platt T, Prentice IC, Rivkin RB, Sathyendranath S, Stephens N, Vogt M (2016) Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13: 4111–4133. doi: 10.5194/bg-13-4111-2016

63. McConville K, Atkinson A, Fileman E, Spicer JI, Hirst AG (2016) Disentangling the counteracting effects of water content and carbon mass on zooplankton growth. Journal of Plankton Research doi: 10.1093/plankt/fbw094

62. Horne CR, Hirst AG*, Atkinson D (2015) Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters 18: 327-335. doi: 10.1111/ele.12413

61. Hirst AG, Horne CR, Atkinson D (2015) Equal temperature-size responses of the sexes are widespread within arthropod species. Proceedings of the Royal Society B 282: 20152475. doi: 10.1098/rspb.2015.2475 [Featured on the front cover: http://rspb.royalsocietypublishing.org/content/282/1821.cover-expansion]

60. Glazier DS, Hirst AG, Atkinson D (2015) Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proceedings of the Royal Society B 282: 20142302. doi: 10.1098/rspb.2014.2302.

59. Maud J, Atkinson A, Hirst AG, Lindeque PK, Widdicombe CE, Harmer RA, McEvoy AJ, Cummings DC (2015) How does Calanus helgolandicus maintain its population in a variable environment? Analysis of a 25-year time series from the English Channel. Progress in Oceanography 137: 513-523. doi: 10.1016/j.pocean.2015.04.028

58. Hirst AG, Glazier DS, Atkinson D (2014) Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecology Letters 17: 1274-1281. doi: 10.1111/ele.12334 [Featured as front cover lead article: http://onlinelibrary.wiley.com/doi/10.1111/ele.2014.17.issue-10/issuetoc]

57. Hirst AG, Kiørboe T (2014) Macroevolutionary patterns of sexual size dimorphism in copepods. Proceedings of the Royal Society B 281: 20140739. doi: 10.1098/rspb.2014.0739

56. Kiørboe T, Hirst AG (2014)  Shifts in mass-scaling of respiration, feeding, and growth rates across life-form transitions in marine pelagic animals. The American Naturalist 183 (4) E118-E130. doi: 10.1086/675241

55. Hirst AG, Keister JE, Richardson AJ, Ward P, Shreeve RS, Escribano RV (2014) Re-assessing copepod growth using the Moult Rate Method. Journal of Plankton Research 36: 1224-1232. doi: 10.1093/plankt/fbu045

54. Hirst AG, Forster J (2013) When growth models are not universal: evidence from marine invertebrates. Proceedings of the Royal Society B 280: 20131546. http://dx.doi.org/10.1098/rspb.2013.1546

53. Forster J, Hirst AG*, Esteban G (2013) Achieving temperature-size changes in a unicellular organism. The ISME Journal 7: 28-36. doi: 10.1038/ismej.2012.76

52. FitzGeorge-Balfour T, Hirst AG*, Lucas CH, Craggs J (2013) Influence of copepod size and behaviour on vulnerability to predation by the scyphomedusa Aurelia aurita. Journal of Plankton Research 36: 77-90. doi: 10.1093/plankt/fbt077

51. FitzGeorge-Balfour T, Hirst AG*, Lucas CH, Craggs J, Whelan EJ, Mombrikotb S (2013) Estimating digestion time in gelatinous predators - a methodological comparison with the scyphomedusa Aurelia aurita. Marine Biology 160: 793-804

50. Hirst AG, Bonnet D, Conway DVP, Kiørboe T (2013) Female-biased sex ratios in marine pelagic copepods: Comment on Gusmão et al. (2013). Marine Ecology Progress Series 489: 297-29849. Kiørboe T, Hirst AG (2013) Data compilation of respiration, feeding, and growth rates of marine pelagic organisms. doi:10.1594/PANGAEA.819857

48. Forster J, Hirst AG*, Atkinson D (2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences USA 109: 19310-19314. doi: 10.1073/pnas.1210460109 [Featured as front cover lead article: http://www.pnas.org/content/109/47.toc]

47. Hirst AG (2012) Intra-specific scaling of mass to length in pelagic animals: ontogenetic shape change and its implications. Limnology & Oceanography 57: 1579-1590

46. Forster J, Hirst AG* (2012) The temperature-size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology 26: 483-492

45. Forster J, Hirst AG*, Woodward G (2011) Growth and development rates have different thermal responses. The American Naturalist 178: 668-678

44. Forster J, Hirst AG*, Atkinson D (2011) How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Functional Ecology 25: 1024-1031

43. Hirst AG, Bonnet D, Conway DVP, Kiørboe T (2010) Does predation control adult sex ratios and longevities in marine pelagic copepods? Limnology & Oceanography 55: 2193-2206

42. Drif K, Hirst AG*, Hay S (2010) Seasonal abundance and egg production rates of Oithona similis and Pseudocalanus elongatus in the northern North Sea: a first comparison of egg-ratio and incubation methods. Marine Ecology Progress Series 415: 159-175

41. Reiss J, Forster J, Cássio F, Pascoal C, Stewart R, Hirst AG (2010) When microscopic organisms inform general ecological theory. Advances in Ecological Research 43: 45-85

40. Yebra L, Harris RP, Head EJH, Yahayaev I, Harris LR, Hirst AG (2009) Mesoscale physical variability affects zooplankton production in the Labrador Sea. Deep Sea Research I 56: 703-715

39. Bonnet D, Harris RP, Yebra L, Guilhaumon F, Conway DVP, Hirst AG (2009) Temperature effects on Calanus helgolandicus (Copepoda: Calanoida) development time and egg production. Journal of Plankton Research 31: 31-44

38. Hirst AG, Ward P (2008) Spring mortality of the cyclopoid copepod Oithona similis in polar waters. Marine Ecology Progress Series 372: 169-180

37. Kiørboe T, Hirst AG (2008) Optimal development time in pelagic copepods. Marine Ecology Progress Series 367: 15-22

36. Heath MR, Rasmussen J, Ahmed Y, Allen J, Anderson CIH, Brierley AS, Brown L, Bunker A, Cook K, Davidson R, Fielding S, Gurney WSC, Harris R, Hay S, Henson S, Hirst AG, Holliday PN, Ingvarsdottir A, Irigoien X, Lindique P, Mayor D, Montagnes D, Moffat C, Pollard R, Richards S, Saunders RA, Sidey J, Smerdon G, Speirs D, Walsham P, Waniek J, Webster L, Wilson D (2008) Spatial demography of Calanus finmarchicus in the Irminger Sea. Progress in Oceanography 76: 39-88

35. Hirst AG, Bonnet D, Harris RP (2007) Seasonal dynamics and mortality rates of Calanus helgolandicus over two years at a station in the English Channel. Marine Ecology Progress Series 340: 189-205

34. Kimmerer WJ, Hirst AG, Hopcroft RR, McKinnon AD (2007) Estimating juvenile copepod growth rates: corrections, inter-comparisons and recommendations. Marine Ecology Progress Series 336: 187-202

33. Ward P, Hirst AG (2007) Oithona similis in a high latitude ecosystem: abundance, distribution and temperature limitation of fecundity rates in a sac spawning copepod. Marine Biology 151: 1099-1110

32. Murphy EJ, Watkins JL, Trathan P, Reid K, Meredith M, Thorpe S, Johnston N, Clarke A, Tarling G, Collins M, Forcada J, Shreeve R, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR, Hill SL, Staniland IJ, Pond DW, Briggs DR, Cunningham NJ, Fleming AH. (2007) Spatial and temporal operation of the Scotia Sea Ecosystem: A review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B 362: 113-148

31. Cook KB, Bunker AJ, Hay S, Hirst AG, Speirs DC (2007) Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. Journal of Plankton Research 29: 757-767

30. Hirst A, López-Urrutia A (2006) Effects of evolution on egg development time. Marine Ecology Progress Series 326: 29-35

29. Buitenhuis E, Le Quéré C, Aumont O, Beaugrand G, Bunker A, Hirst A, Ikeda T, O’Brien T, Piontkovski S, Straile D (2006) Biogeochemical fluxes through mesozooplankton. Global Biogeochemical Cycles 20: GB2003, doi:10.1029/2005GB002511

28. Yebra L, Hirst AG, Hernandez-Leon S (2006) Assessment of Calanus finmarchicus growth and dormancy through the aminoacyl-tRNA synthetases (AARS) method. Journal of Plankton Research 28: 1191-1198

27. Tarling GA, Shreeve RS, Hirst AG, Atkinson A, Murphy EJ, Watkins JL (2006) Natural growth rates of Antarctic krill, Euphausia superba: I. Factors affecting inter-moult period and refinements to methods. Limnology & Oceanography 51: 959-972

26. Atkinson A, Shreeve RS, Hirst AG, Rothery P, Tarling GA, Pond DW, Korb R, Murphy EJ, Watkins JL (2006) Natural growth rates of Antarctic krill, Euphausia superba: II. Predictive models based on food, temperature, body length, sex and maturity stage. Limnology & Oceanography  51: 973-987

25. Hirst AG, Peterson WT, Rothery P (2005) Errors in juvenile copepod growth rate estimates are widespread: problems with the Moult Rate method. Marine Ecology Progress Series 296: 263-279

24. Bonnet D, Richardson A, Harris R, Hirst A, Beaugrand G, Edwards M, Ceballos S, Diekman R, Lopez-Urrutia A, Valdes L, Carlotti F, Molinero JC, Weikert H, Greve W, Lucic D, Albaina A, Yahia ND, Umani SF, Miranda A, dos Santos A, Cook K, Robinson S, Fernandez de Puelles ML (2005) An overview of Calanus helgolandicus ecology in European waters. Progress in Oceanography 65: 1-53

23. Bunker AJ, Hirst AG* (2004) Fecundity of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Marine Ecology Progress Series 279: 161-181

22. Tarling G, Shreeve RS, Ward P, Atkinson A, Hirst AG (2004) Life-cycle phenotypic composition and mortality of Calanoides acutus (Copepod: Calanoida) in the Scotia Sea: a modelling approach. Marine Ecology Progress Series 272: 165-181

21. Hirst AG, Bunker AJ (2003) Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnology and Oceanography 48: 1988-2010

20. Hirst AG, Roff JC, Lampitt RS (2003) A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Advances in Marine Biology 44: 1-142

19. Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series 230: 195-209

18. Hirst AG, McKinnon AD (2001) Does egg production represent adult female copepod growth? A call to account for body weight changes. Marine Ecology Progress Series 223: 179-199

17. Joint I, Wollast R, Chou L, Batten S, Elskens M, Edwards E, Hirst A, Burkill P, Groom S, Gibb S, Miller A, Hydes D, Dehairs F, Antia A, Barlow R, Rees A, Pomroy A, Brockmann U, Cummings D, Lampitt R, Loijens M, Mantoura F, Miller P, Raabe T, Alvarez-Salgado X, Stelfox C, Woolfenden J. (2001) Pelagic production at the Celtic Sea shelf break. Deep-Sea Research II 48: 3049-3081

16. Halvørsen E, Hirst AG, Tande K, Lampitt RS (2001) Diet and community grazing by copepods in an upwelled filament off the NW coast of Spain. Progress In Oceanography 51: 399-421

15. Hirst AG, Rodhouse PG (2000) Impacts of geophysical seismic surveying on fishing success. Reviews in Fish Biology and Fisheries 10: 113-118

14. Hirst AG, Sheader M, Williams JA (1999) Annual pattern of calanoid copepod abundance, prosome length and minor role in pelagic carbon flux in the Solent, U.K. Marine Ecology Progress Series 177: 133-146

13. Batten SD, Hirst A, Hunter J, Lampitt R (1999) Mesozooplankton biomass in the Celtic Sea: a first step approach to comparing and combining CPR and LHPR data. Journal of the Marine Biological Association of the U.K. 79: 179-181

12. Hirst AG, Lampitt, RS (1998) Towards a global model of in situ weight-specific growth in marine planktonic copepods. Marine Biology 132: 247-257

11. Hirst AG, Lucas CH (1998) Salinity influences body weight quantification in the scyphomedusa Aurelia aurita: important implications for body weight determination in gelatinous zooplankton. Marine Ecology Progress Series 165: 259-269

10. Hirst AG, Castro-Longoria E (1998) Acartia bifilosa (Copepoda: Calanoida): a clarification of the species and its varieties inermis and intermedia. Journal of Plankton Research 20: 1119-1130

9.  Hirst AG, Batten SD (1998) Long-term changes in the diel vertical migration behaviour of Calanus finmarchicus in the North Sea are unrelated to fish predation. Marine Ecology Progress Series 171: 307-310

8.  Lucas CH, Hirst AG, Williams JA (1997) Plankton dynamics and Aurelia aurita production in two contrasting ecosystems: Comparisons and consequences. Estuarine, Coastal and Shelf Science 45: 209-219

7.  Hirst AG, Sheader M (1997) Are in situ weight-specific growth rates body size independent in marine planktonic copepods? A re-analysis of the global syntheses, and a new empirical model. Marine Ecology Progress Series 154: 155-165

6.  Hirst AG, Rodhouse PG (1996) Assessment of the effects of seismic surveying upon squid and squid populations within the Falkland Islands Conservation and Management Zone. An independent science report for the Falkland Islands Government, 35pp.

5.  Rowe GA, Hawkins LE, Hutchinson S, Sheader M, Hirst AG (1994) Interactive processes in Lanice conchilega (Polychaeta, Terebellidae) dominated intertidal community. Mémoires du Muséum National d'Histoire Naturelle, Actes de la 4ème Conférence Internationale des Polychètes. p.648.

Books

4.  Banse K and Hirst AG (eds.) (In press) The nauplii of 85 common species of pelagic copepods of the world’s ocean.

Book Chapters

3.  Hirst AG (2017) Zooplankton productivity. pp. 34-41 In: Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy. C Castellani & M Edwards (eds.) Oxford University Press.

2.  Murphy EJ et al. including Hirst AG (2012) Spatial and temporal operation of the Scotia Sea ecosystem. Antarctica: An extreme environment in  changing world. Rogers AD, Murphy EJ, Johnston NM, Clarke A et al. (eds.) John Wiley and Sons.

1.  Atkinson D, Hirst AG (2007) Body size and the organisation and function of aquatic ecosystems. pp. 33-54. In: Life histories and body size. A Hildrew, D Raffaelli & R Edmonds-Brown (eds.) Cambridge University Press.

Aquatic ecosystems have a profound impact on humankind and the biosphere, and can provide critical insight into biological questions. Using marine and freshwater organisms our research aims to mechanistically understand and predict rules of physiology and ecology. We examine physiology, vital rates and ocean biogeochemistry, including assessing the impacts of climate change. In our work we use diverse approaches including meta-analysis, experimentation, fieldwork and modelling.

bottom of page